Code No :20EC2T02

**R20** 

# I B.TECH II SEMESTER REGULAR EXAMINATIONS, SEPTEMBER - 2021 BASIC ELECTRONIC DEVICES AND CIRCUITS (ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 Hours Max. Marks: 70

**Note:** Answer **ONE** question from each unit (5 ×14 = 70 Marks)

## **UNIT-I**

1. a) Explain the following with respect to a Diode

[7M]

- (i) Static resistance
- (ii) Dynamic resistance
- (iii) Reverse resistance
- b) A Si diode has a saturation current  $I_0 = 10$ nA at T = 300°K.

[7M]

- (i) Find the forward current  $I_D$  if the forward drop  $V_D$  is 0.5V.
- (ii) This diode is rated for a maximum current of 5A. What is its junction temperature at rated current if the forward drop is 0.7V.

(OR)

- 2. a) Draw the energy band diagram of a PN Junction and explain the working of a [7M] diode.
  - b) Explain the terms avalanche breakdown and 'Zener breakdown'. What do you [7M] mean by Zener voltage and Zener current? How does Zener diode regulate the DC voltage?

### **UNIT-II**

- 3. a) Draw and explain operation of bridge rectifier. Why a bridge rectifier is [7M] preferred over a center-tap rectifier?
  - b) A HWR circuit has filter capacitor of 1200μF and is connected to a load of [7M] 400Ω. The rectifier is connected to a 50Hz, 120V<sub>rms</sub> Source. It takes 2mSec for the capacitor to recharge during each cycle. Calculate the minimum value of the repetitive surge current for which the diode should be rated.

(OR)

- 4. a) Show that the maximum rectification efficiency of HWR is 40.6% and that of [7M] FWR is 81.2%.
  - b) What are the important characteristics of a rectifier circuit? Explain them [7M] briefly.

#### **UNIT-III**

- 5. a) What are the differences between Bipolar Junction transistor and Field effect [7M] Transistor?
  - b) Define  $\alpha_{dc}$  and  $\beta_{dc}$  of a transistor, for a transistor the base current in  $100\mu A$  [7M] and collector current in  $2.9\mu A$ . Find  $\alpha_{dc}$  and  $\beta_{dc}$ .

(OR)

6. a) Draw the circuit and explain the drain and gate characteristics of a JFET in [7M] Common Source configuration.

b) Describe a set up to obtain the output characteristics of a transistor in CE [7M] configuration. Indicate the various regions of operation on the output characteristics.

#### **UNIT-IV**

7. a) Draw a circuit employing sensistor compensation and explain its working. [7M]

b) Draw the small signal hybrid model of CE amplifier and derive the [7M] expressions for its  $A_i$ ,  $A_v$ ,  $R_i$  and  $R_o$ .

(OR)

8. a) Explain thermal instability. What are the factors affecting the stability factor. [7M]

b) A transistor used in CB circuit has the following set of h parameters, [7M]  $h_{ib} = 2~0\Omega$ ,  $h_{fb} = 0.98$ ,  $h_{rb} = 3\times10^{-4}$ ,  $h_{ob} = 0.5\times10^{-6}$ . Find the values of  $R_i$ ,  $R_o$ ,  $A_i$  and  $A_v$  if  $R_S = 600\Omega$  and  $R_L = 1.5K\Omega$ .

#### **UNIT-V**

- 9. a) Give the block diagram of a general negative feedback amplifier. Obtain the [7M] expression for closed loop gain for a negative feedback amplifier.
  - b) Find the input output resistance of voltage series feedback amplifier. [7M]

(OR)

- 10. a) Give the two Barkhausen conditions required in order for sinusoidal [7M] oscillations to be sustained.
  - b) Calculate the frequency of oscillation of a Hartley oscillator having [7M]  $L_1 = 0.5 \text{mH}$  and  $L_2 = 1 \text{mH}$  and  $C = 0.2 \mu \text{F}$ , neglect mutual inductances.

\* \* \* \* \*